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Abstract. Symmetries have played an important role in the elucidation of the structure of nuclei and will
continue to do so for exotic nuclei. As an example, an application of pseudo-SU(4) symmetry is discussed.
It can be used as a starting point for a boson model that includes T = 0 as well as T = 1 bosons (IBM-4);
applications are presented for N = Z nuclei from 58Cu to 70Br.

PACS. 21.60.Fw Models based on group theory

1 A brief history of symmetry in nuclei

Symmetry considerations have played an important role
in the development of nuclear physics. Already in 1932,
at the inception of the discipline, the observed similari-
ties between the proton and the neutron were interpreted
by Heisenberg [1] in terms of an “isotopic” symmetry, the
origin of which subsequently was related by Wigner [2] to
the charge independence of the strong force. Since then,
the use and application of symmetries in nuclear physics
have gone from strength to strength. The most impor-
tant developments include Wigner’s SU(4) supermultiplet
model [2] which extends Heisenberg’s idea to isospin and
spin, Racah’s SU(2) pairing model [3] leading to the con-
cept of seniority, Elliott’s SU(3) model [4] which provides
an understanding of rotational band structures in the con-
text of the spherical shell model and the U(6) interacting
boson model of Arima and Iachello [5] which gives a uni-
fied description of collective structures observed in nuclei.

These different models, which were developed over a
period of more than half a century, can be understood
from a common perspective using the concept of dynami-
cal symmetry or spectrum-generating algebra (for a recent
review, see ref. [6]). This approach is formulated rigorously
in terms of the theory of Lie algebras and can be charac-
terised in words as follows. Given a system of interact-
ing particles (bosons or fermions) a definite mathematical
procedure exists to construct a set of commuting opera-
tors which supply the quantum numbers of a classification
scheme. Furthermore, to each set of commuting opera-
tors there corresponds a class of many-body Hamiltonians
which can be solved analytically simply by requiring that
they be written in terms of these commuting operators.
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A point that should be emphasised is that this pro-
cedure is generic and equally valid for bosons and for
fermions, as indeed it is for mixed systems of bosons and
fermions. Thus, for example, the applications of the in-
teracting boson model to even-even nuclei [7] could be
extended naturally to odd-mass nuclei by introducing an
interacting boson-fermion model [8]. The fact that bosons
and fermions can be treated alike has led to the formu-
lation of a supersymmetric model [9] which provides a
simultaneous description of “boson-like” (even-mass) and
“fermion-like” (odd-mass) nuclei. Nuclear supersymmetry
has been tested extensively and confirmed in a number of
cases in the 1980s. Recent advances in detector resolution
have made it possible to propose tests of dynamical super-
symmetry in even more complicated odd-odd nuclei, and
were successful in the example of the nucleus 198Au [10]
(see also ref. [11]).

There have also been developments over the last years
in the theory of dynamical symmetries. For example, gen-
eralisations towards two different kinds of partial dynami-
cal symmetry have been formulated [12,13]. And, very re-
cently, a new type of dynamical symmetry was proposed
that specifically deals with many-particle systems at or
close to a phase transition [14,15] (see also ref. [16]).

Most of these applications of symmetry techniques
concern nuclei close to the line of stability. But what about
exotic nuclei?

2 Symmetry in exotic nuclei

Given the current direction of nuclear-physics research to-
wards the investigation of rare isotopes, the role of symme-
try in exotic nuclei should be examined. So far, symmetry-
based applications to nuclei on the neutron-rich side are
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few. (An isolated example that speculates on the occur-
rence of new modes of excitation in nuclei with a neutron
skin can be found in ref. [17].) In this contribution we fo-
cus on nuclei at the other side of the line of stability and
specifically on self-conjugate (N = Z) nuclei. These are
of interest for several reasons, but in particular because
they are the only nuclear systems that might display ef-
fects of T = 0 pairing. Unlike the usual T = 1 pairing,
which involves either neutrons or protons with antiparal-
lel spins (S = 0), T = 0 pairing requires a neutron and
a proton coupled to intrinsic spin S = 1. Whether nuclei
at the N = Z line display T = 0 pairing or not is still a
hotly debated question and considerable effort is spent in
designing, carrying out and analysing data from experi-
ments that purport to study this question.

The ideal starting point to study these questions is, in
fact, provided by an old algebraic model due to Flowers
and Szpikowski, and known as the SO(8) model [18]. The
standard pairing model (which concerns T = 1 pairing
between identical nucleons) was shown to have an SU(2)
dynamical symmetry [19]; SO(8) is its generalisation that
includes T = 0 as well as T = 1 pairing for a system of
neutrons and protons. A group-theoretical analysis of the
model shows that three analytical solutions of this gen-
eralised pairing Hamiltonian are possible: pure isoscalar
pairing, pure isovector pairing and equal pairing strengths
in the isoscalar and isovector channels. Although many
results of interest can be extracted from this model, it
remains nevertheless too schematic to be of relevance in
nuclei. It can be made more realistic by including effects
of the non-degeneracy of single-particle orbits generated
by the nuclear mean field. Such an analysis has been per-
formed recently with particular emphasis on the effect of
the spin-orbit term [20]. It takes the SO(8) model with
non-degenerate single-particle energies as a starting point
for a mapping onto a corresponding boson model in terms
of l = 0 bosons with s = 0, t = 1 or s = 1, t = 0. The
main conclusion of ref. [20] is that the spin-orbit term in
the nuclear mean field destroys isoscalar superfluid corre-
lations in self-conjugate nuclei.

The idea to map the shell model onto a corresponding
boson model can be made more concrete as will be dis-
cussed in the remainder of this contribution. With SU(4)
supermultiplet symmetry and its generalisation to pseudo-
SU(4) (discussed briefly in sect. 3) as a starting point, a
boson model is constructed (sect. 4) that includes l = 0
and l = 2 bosons with s = 0, t = 1 or s = 1, t = 0 (IBM-4)
and hence provides a natural framework to study isoscalar
and isovector pairing. First results of IBM-4 in the 28–50
shell are presented. The boson Hamiltonian is derived
microscopically from a realistic shell-model Hamiltonian
through a mapping that relies on the existence of approx-
imate shell-model symmetries. Applications are presented
for the odd-odd N = Z nuclei from 58Cu to 70Br.

3 Pseudo-SU(4) symmetry in pf-shell nuclei

Except in p-shell nuclei, LS-coupling is not an appropri-
ate classification scheme since L and S are badly broken

by the strong spin-orbit term in the nuclear mean field.
Hence Wigner’s elegant supermultiplet model [2], based
on SU(4) symmetry, can only be applied to the very light
nuclei. Nuclei beyond 56

28Ni28, however, can be classified in
terms of a pseudo-SU(4) symmetry [21,22] leading to the
following (approximate) labelling of shell-model states:

|n(λ̃µν)α̃L̃S̃JMJ ; TMT 〉, (1)

where n is the number of nucleons in the valence shell
which is taken to be the entire pseudo-oscillator shell (e.g.,
pseudo-sd). The total angular momentum and isospin of
all nucleons are J and T , respectively, and these quan-
tum numbers are conserved by any rotationally invari-
ant, charge-symmetric Hamiltonian. In addition, the to-
tal pseudo-orbital angular momentum L̃ and the total
pseudo-spin S̃ are conserved, which result from the sepa-
rate coupling of all individual pseudo-orbital angular mo-
menta l̃i and pseudo-spins s̃i [23,24]. The (λ̃µν) are the la-
bels associated with pseudo-SU(4) in direct analogy with
Wigner’s supermultiplet labels. Finally, α̃ denotes any re-
maining label necessary for a full characterisation of the
states in pseudo-orbital space.

In ref. [22] it was shown that the pseudo-SU(4) clas-
sification (1) is relevant for nuclei at the beginning of the
28–50 shell; towards the middle of this shell the g9/2 orbit
starts playing an important role and the assumption of
the dominance of the pf5/2 orbits breaks down. The pro-
cedure for testing the validity of pseudo-SU(4) is similar
to the one followed by Vogel and Ormand [25], except that
it is done for pseudo- instead of standard-SU(4), and is
explained in ref. [22].

4 The isospin-invariant boson model IBM-4

The IBM-4 [26] is the most elaborate version of the inter-
acting boson model (IBM) of Arima and Iachello [7]. The
bosons of IBM-4 are assigned an orbital angular momen-
tum l which can be either l = 0 or l = 2. In addition,
they are labelled by an intrinsic spin s and an isospin t,
for which the combinations (s, t) = (0, 1) and (1, 0) are re-
tained. The bosons represent correlated fermion pairs and
the choice of bosons is dictated by the requirement that
they should describe nuclear excitations at low energy.
The particular choice made in the IBM-4 can be justified
by considering the spectrum of two nucleons in a harmonic
oscillator shell interacting via a delta-force. In the absence
of a spin-orbit term in the mean field, this interaction re-
sults in low-energy states labelled by L, S, and T quantum
numbers that have the same values as those of the bosons
of IBM-4. Another justification of the choice of bosons in
IBM-4, already emphasised by Elliott and Evans [26], is
that it allows a classification in which there appears an
SU(4) algebra that is to be associated with Wigner’s su-
permultiplet algebra (or its “pseudo” equivalent).

As regards applications, the set of bosons of IBM-4
is particularly well adapted to deal with even-even and
odd-odd N ≈ Z nuclei. This was demonstrated for
nuclei in the sd-shell [27,28] but a full test of the IBM-4
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Fig. 1. Experimental, shell model and IBM-4 spectra of A = 62 nuclei. The experimental energies of levels with T = 0 are
taken from 62Ga, while those with T = 1 are deduced from the isobaric analogue states in 62Zn.

remains desirable since Halse et al. projected onto a
symmetric IBM-1 subspace and no calculations have
been done yet in the complete IBM-4 space. The mass
region of primary interest here is the first half of the
28–50 shell. Shell-model calculations in the full pf5/2g9/2

space are feasible for nuclei just beyond 56
28Ni28 but they

become increasingly difficult for the heavier isotopes.
One thus enters a mass region where the full shell-model
calculations are, if not impossible, at least arduous and
where the IBM-4 offers a viable alternative.

The boson energies and the boson-boson interactions
are determined with the usual procedure due to Otsuka,
Arima and Iachello, referred to as OAI [29], which
consists of the calculation of matrix elements of a realistic
shell-model Hamiltonian between one- and two-fermion
states and their mapping onto corresponding boson ma-
trix elements. With reference to [30] for full details, here
only the following important role played by symmetries
is emphasised: they provide quantum numbers through
which the correspondence between both spaces can be
established. In addition, symmetries in the shell model
greatly reduce the non-orthogonality of fermion-pair
states and therefore simplify the construction of the
boson Hamiltonian [31]. This is the reason why the
starting point of the mapping is a shell-model calculation
that preserves various symmetries.

The first test of the IBM-4 Hamiltonian thus derived
is the three-boson nucleus 62

31Ga31. Figure 1 shows the
known experimental levels [32] together with the shell-
model [32] and the IBM-4 results. (We should mention
that there are some conflicting spin assignments regard-
ing this nucleus [33].) Both shell model and IBM-4 predict
a 0+ (T = 1) ground state and a 1+ (T = 0) first-excited

state. Note that this represents an inversion with respect
to the order in 58

29Cu29 which agrees with the data. Given
that no free parameter is introduced in the IBM-4 cal-
culation, the agreement for the isoscalar levels between
shell model and IBM-4 can be called remarkable and a
near one-to-one correspondence between levels can be es-
tablished, the exceptions being higher-spin (5+ and 7+)
shell-model states which are absent from the IBM-4 be-
cause it does not include high-spin T = 0 bosons. Note
also a low-lying 0+ state in the IBM-4 calculation which,
since the shell-model counterpart is much higher in en-
ergy, might have an important spurious component. Ex-
perimentally, excited states in 62Ga were located for the
first time [32] in an experiment which populated the nu-
cleus through a fusion-evaporation reaction. However, this
type of study of N = Z nuclei in this region is difficult,
requiring high experimental sensitivity, and yields infor-
mation only on the yrast structure. The vast majority of
T = 0 states predicted by the shell model or the IBM-4
thus remains to be verified.

A similar situation applies to 66
33As33 although in this

case the population was via isomeric states [34]. Only a
few states have been identified and without unique spin as-
signments. The population of excited states in 70

35Br35 was
reported but subsequently withdrawn [35]. Recent experi-
ments should soon clarify the situation in this nucleus [36].
At this moment, however, a meaningful comparison with
the IBM-4 results of fig. 2 is still premature.

Turning now to the T = 1 states, in 62Ga, one notes
more levels in experiment and the shell model as com-
pared to the IBM-4. This deviation grows in the heavier
nuclei 66As and 70Br, where the T = 1 energies can be
taken from the experimental level schemes of the isobaric
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Fig. 2. Spectra of 66As and 70Br predicted by IBM-4.

analogues in 66
32Ge34 and 70

34Se36. In particular, one notes
the absence from IBM-4 of a second 2+ level at the ob-
served experimental energy (Ex ≈ 2 MeV). In a corre-
sponding IBM-3 analysis (which is feasible for the T = 1
subspace of N = Z nuclei) this state is correctly repro-
duced but only after allowing a microscopically dictated
boson-number dependence of the Hamiltonian. This defi-
ciency of the current calculation for isovector states can
thus presumably be traced back to the constancy of the
boson Hamiltonian for all nuclei shown and indicates the
need to derive a boson-number dependence in IBM-4 too.

5 Conclusion

The present results illustrate the predictive power of the
IBM-4. In particular, the 0+(T = 1)–1+(T = 0) splitting
is correctly reproduced in the known cases, 58Cu and 62Ga,
and is predicted to be about 1 MeV in 66As and 70Br
where it is not well established experimentally and where
a shell-model calculation currently is still difficult. Given
the complexity of the IBM-4 Hamiltonian derived from
the shell model, it will now be of interest to extract its
essential features that lead to this behaviour.

We would like to thank D.D. Warner, our collaborator in this
work.
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